Explanations of unsupervised learning clustering applied to data security analysis
نویسندگان
چکیده
Network security tests should be periodically conducted to detect vulnerabilities before they are exploited. However, analysis of testing results is resource intensive with many data and requires expertise because it is an unsupervised domain. This paper presents how to automate and improve this analysis through the identification and explanation of device groups with similar vulnerabilities. Clustering is used for discovering hidden patterns and abnormal behaviours. SelfOrganizing Maps are preferred due to their soft computing capabilities. Explanations based on Anti-unification give comprehensive descriptions of clustering results to analysts. This approach is integrated in Analia, a computer-aided system to detect network vulnerabilities. Source URL: https://www.iiia.csic.es/en/node/54032 Links [1] https://www.iiia.csic.es/en/staff/guiomar-corral [2] https://www.iiia.csic.es/en/staff/eva-armengol [3] https://www.iiia.csic.es/en/staff/albert-fornells [4] https://www.iiia.csic.es/en/staff/elisabet-golobardes
منابع مشابه
Explanations of unsupervised learning clustering applied to data security analysis
Network security tests should be periodically conducted to detect vulnerabilities before they are exploited. However, analysis of testing results is resource intensive with many data and requires expertise because it is an unsupervised domain. This paper presents how to automate and improve this analysis through the identification and explanation of device groups with similar vulnerabilities. C...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملData Security Analysis Using Unsupervised Learning and Explanations
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملData security using unsupervised learning and explanations
Vulnerability assessment is an effective security mechanism to identify vulnerabilities in systems or networks before they are exploited. However manual analysis of network testing and vulnerability assessment results is time consuming and demands expertise. This paper presents an improvement of Analia, which is a security system to process results obtained after a vulnerability assessment usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 72 شماره
صفحات -
تاریخ انتشار 2009